Finite-sample Analysis of Bellman Residual Minimization

نویسندگان

  • Odalric-Ambrym Maillard
  • Rémi Munos
  • Alessandro Lazaric
  • Mohammad Ghavamzadeh
چکیده

We consider the Bellman residual minimization approach for solving discounted Markov decision problems, where we assume that a generative model of the dynamics and rewards is available. At each policy iteration step, an approximation of the value function for the current policy is obtained by minimizing an empirical Bellman residual defined on a set of n states drawn i.i.d. from a distribution μ, the immediate rewards, and the next states sampled from the model. Our main result is a generalization bound for the Bellman residual in linear approximation spaces. In particular, we prove that the empirical Bellman residual approaches the true (quadratic) Bellman residual in μ-norm with a rate of order O(1/ √ n). This result implies that minimizing the empirical residual is indeed a sound approach for the minimization of the true Bellman residual which guarantees a good approximation of the value function for each policy. Finally, we derive performance bounds for the resulting approximate policy iteration algorithm in terms of the number of samples n and a measure of how well the function space is able to approximate the sequence of value functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Is the Bellman residual a bad proxy?

This paper aims at theoretically and empirically comparing two standard optimization criteria for Reinforcement Learning: i) maximization of the mean value and ii) minimization of the Bellman residual. For that purpose, we place ourselves in the framework of policy search algorithms, that are usually designed to maximize the mean value, and derive a method that minimizes the residual ‖T∗vπ − vπ...

متن کامل

Robust Value Function Approximation Using Bilinear Programming

Existing value function approximation methods have been successfully used in many applications, but they often lack useful a priori error bounds. We propose approximate bilinear programming, a new formulation of value function approximation that provides strong a priori guarantees. In particular, this approach provably finds an approximate value function that minimizes the Bellman residual. Sol...

متن کامل

Kernel-Based Reinforcement Learning Using Bellman Residual Elimination

This paper presents a class of new approximate policy iteration algorithms for solving infinite-horizon, discounted Markov decision processes (MDPs) for which a model of the system is available. The algorithms are similar in spirit to Bellman residual minimization methods. However, by exploiting kernel-based regression techniques with nondegenerate kernel functions as the underlying cost-to-go ...

متن کامل

Regularized Policy Iteration

In this paper we consider approximate policy-iteration-based reinforcement learning algorithms. In order to implement a flexible function approximation scheme we propose the use of non-parametric methods with regularization, providing a convenient way to control the complexity of the function approximator. We propose two novel regularized policy iteration algorithms by addingL-regularization to...

متن کامل

Should one minimize the Bellman residual or maximize the mean value?

This paper aims at theoretically and empirically comparing two standard optimization criterion for Reinforcement Learning: i) maximization of the mean value (predominant approach in policy search algorithms) and ii) minimization of the Bellman residual (mainly used in approximate dynamic programming). For doing so, we introduce a new policy search algorithm based on the minimization of the resi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010